
SkySonde Client Plugin System Documentation
Version 1.0, January 27, 2016

Allen Jordan, allen.jordan@noaa.gov

SkySonde Client has support for adding external instrument plugins written by users. This
allows new instruments to be attached to an iMet-1-RSB radiosonde (following the XDATA
protocol) and their data will be collected, displayed, and stored with the other radiosonde fields
in a CSV file. Any available plugins will be displayed on the configuration screen for
enabling/disabling and setup fields:

Figure 1: Other Instruments tab in SkySonde Client, showing the plugin instruments available.

Creating a New Plugin

Project Initialization

To create a custom instrument plugin, use Visual Studio 2013 or later. The free “Community”
edition should work fine:

https://www.visualstudio.com/en-us/news/vs2013-community-vs.aspx

Also check that SkySonde Client is installed. The following instructions are written for Visual
Studio 2013 with the .NET Framework 4 target framework (some settings may have different
locations or names in Visual Studio 2015 or later).

Start a new C# project in Visual Studio and choose the “Class Library” option. Any project name
will work. From the Solution Explorer, right-click on “References” and choose “Add
Reference…”. Click the “Browse…” button on the bottom right and navigate to SkySonde
Client’s installation folder (usually “C:\Program Files (x86)\SkySonde Client”). Now open the
“Plugins” folder, select “PluginReference.dll”, and press the “Add” button:

We will also need the System.Windows.Forms reference, available from the “Assemblies-
>Framework” area of the Reference Manager. Press “OK” to close the Reference Manager
dialog and you should now see “PluginReference” added to the project’s list of references in
the Solution Explorer.

https://www.visualstudio.com/en-us/news/vs2013-community-vs.aspx

To code the plugin, use the “Class1.cs” file Visual Studio automatically generated for this
project. You can rename the file and class if needed. This class will extend the PluginBase class
from the PluginReference library we referenced earlier. The basic plugin class template looks
like this:

Plugin Configuration Control

Any setup information or metadata needed by your instrument will be collected in SkySonde
Client’s configuration dialog. You need to write a user control containing any fields required.
Start by adding a new User Control to the project, naming it something like PluginConfig.cs. I
start by placing a group box around the perimeter using the Windows Forms GUI designer,
anchoring it to all sides, and give it some text describing the instrument like “AllenTest
Configuration”. Then any fields needed by the instrument are added.

Every plugin instrument should also add the “MultipleInstrumentsControl” user control to the
bottom of their configuration area. This will allow more than one of the same plugin
instrument to be attached to a single iMet, using a separate instance of SkySonde Client for
each (and selecting the specific daisy chain index with this user control). To see this control in
the Windows Forms designer, open the Toolbox and right-click in an unused area. Select
“Choose Items…” and click the “Browse…” button. Navigate to the same SkySonde Client
installation directory then the Plugins subdirectory and again select “PluginReference.dll” and
press “Open”. Now “MultipleInstrumentsControl” should be selected in the “Choose Toolbox
Items” dialog. Press OK.

Find “MultipleInstrumentsControl” in the ToolBox and place it somewhere in the configuration
control area. The final configuration control should look something like this:

Now go to the code view for this user control. You need to write properties to access each of
the controls:

Plugin Data View Control

We will also need a way to view incoming instrument data in real-time during a flight. Create a
new User Control in the same way as the configuration control made in the last section. Name
it something like “PluginDataView.cs”. I wrap a group box around everything and anchor it to
the sides again, making a nice border, and set the text to “Plugin Data” (using the instrument
name). My example looks like this:

In the code view, we will need an UpdateData method and delegate, allowing SkySonde’s data
collection thread to safely update the GUI fields as packets are parsed. It should look
something like this:

Note the use of BeginInvoke to safely call the UpdateData method again on the GUI thread
instead of the data collection thread.

Writing the Plugin Code

The plugin code should contain instances of the configuration and data view controls we wrote
earlier, and member variables to store any metadata and packet data fields. It should also
contain a separate Panel for each user control, set to null. The top of the class should look like
this:

The following override methods/properties need to be written for a plugin to work. Note that
the System.Xml and System.Xml.Linq namespaces should be included (with “using” statements)
at the top of the plugin class’ file for some of the methods below.

 InstrumentName
o The name of the plugin's instrument, to be shown in the GUI.

 InstrumentDescription
o A sentence or two describing the instrument in more detail.

 GetConfigPanel
o Create and return a Windows Forms Panel containing any

setup/configuration/metadata controls required by the plugin instrument.
o When called for the first time, initialize the configPanel. For future calls, just

return the existing configPanel.
o AutoSize is set so SkySonde can size it as needed

 ParseConfigPanel
o After the user has finished entering config values in the GUI and pressed "OK",

this method will be called.
o The plugin should parse its own config panel controls and store the results.

 GetDataViewPanel
o Create and return a Windows Forms Panel for displaying real-time data from the

plugin's instrument. The ParsePacket method should update the panel's controls
as data comes in.

o When called for the first time, initialize the dataViewPanel. For future calls, just
return the existing dataViewPanel.

o DocStyle.Fill is used for docking the data view panel within SkySonde Client’s
plugin data window.

 OutputRawconfigXML

o Output XML elements using XmlTextWriter's WriteElementString method for
saving any of the plugin instrument's metadata fields in the flight's rawconfig
file.

o Use XMLWriter’s WriteElementString method to output each of your metadata
fields

o Prefix your xml element names with the instrument name to keep them unique

 ParseRawconfig
o For reprocessing flights, this method should parse the rawconfig xml file to

restore any of the plugin's required metadata fields, and update the config GUI
panel.

o This should also set the plugin's "Enabled" property if an appropriate xml field is
located for the plugin's instrument.

 ParsePacket
o Parse a real-time data packet if it matches the plugin's expected format, and

display the results on the config control.
o This could be (but currently isn't) called from an alternate thread, so use

BeginInvoke when updating the data view GUI panel.
o Use the PluginHelper class from PluginReference for IntFromMSBHexString

 OutputCSVMetadataLines
o Output instrument metadata lines to the top of the CSV file in the format:

 name1:, value1
 name2:, value2

 OutputCSVHeaderSegment
o Output CSV header field names for the plugin's output fields. Please include

units in square brackets at the end of the name. Always start with a leading
comma, and finish without a comma. Example:

 , fieldname1 [units1], fieldname2 [units2]

 OutputCSVRowSegment
o Output the plugin's data matching the supplied UTC date time in a partial CSV

row (or just output the latest received data).
o The resulting string should be comma separated and begin with a comma, like

this:
 , data1, data2, data3

Building and Using

Now the plugin should compile without errors. Make sure the project is targeting .NET
Framework 4 (check this under the project properties). Building the solution will produce a .dll
file with your plugin’s name in the build output directory. The “Release” build is preferable
(change Visual Studio from Debug to Release build mode and recompile). My .dll file is located
in the folder:

C:\Users\jordan\Documents\Visual Studio
2013\Projects\AllenTestPlugin\AllenTestPlugin\bin\Release

Copy your plugin’s dll file into SkySonde Client’s Plugins folder. On my machine, this is here:
C:\Program Files (x86)\SkySonde Client\Plugins

Now open (or re-open, if already running) SkySonde Client. The “Other” tab should display your
new plugin and its configuration control/panel:

After checking the box by the plugin name and typing in a serial number, then setting up the
rest of the SkySonde Client config fields, pressing OK will show the plugin data window.

After connecting the plugin instrument to an iMet and starting transmission, the data are
displayed and saved to the output CSV file:

This demo project is available for download on the NOAA OZWV Software Download website.

